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Bifurcation Based Nonlinear Feedback Control for 

Rotating Stall in Axial Compressors * 

Guoxiang Gu^,    Andrew Sparks'    and    Siva Bandat 

April 1996 

Abstract 

Classical bifurcation analysis for nonlinear dynamics is used to derive a nonlinear feedback control 

law that eliminates the hysteresis loop associated with rotating stall and extends the stable operating 

range in axial compressors. The proposed control system employs pressure rise as output measure- 

ment and throttle position as actuating signal for which both sensor and actuator exist in the current 

configuration of axial compressors. Thus, our results provide a practical solution for rotating stall 

control in axial compressors. 

1    Introduction 

An axial compressor is a vital part of turbine-based aeroengines. However, the engine performance is 

effectively reduced by rotating stall and surge in axial compressors, which are instabilities that arise in 

the unsteady fluid dynamics. One reason that these unsteady aerodynamic instabilities can lead to large 

penalties in performance is that they are difficult to predict accurately during design. Feedback control 

has to be employed to suppress the rotating stall and surge in order to extend the stable operating range 

and/or to enlarge domains of attraction of stable equilibria for compressor systems and to improve the 

engine performance. 

As such, rotating stall and surge control has become an active research field, especially in the past 

decade due to the emergence of the Moore-Greitzer model [12]. This is a low order nonlinear state- 

space model that captures the nonlinear dynamics of the compressor system through its bifurcation 

characteristics [2, 11]. Although initial research has focused on linear control for rotating stall [5, 14], 

nonlinear control has gradually gained more recognition and attracted more attention. In fact, the 

application of classical nonlinear dynamics to rotating stall and surge dynamics motivated a simplified 

approach to rotating stall and surge control based on bifurcation theory. This idea was developed by 

This work was supported in part by AFOSR under contract no.  F49620-94-l-0415DEPSCoR, and by WL/FIGC of 
Wright-Patterson AFB under a Summer Faculty Fellowship grant. 

* Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803-5901. 

T Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH, 45433-7531. 



Abed and his co-workers [1, 2, 10, 16] and was shown to be effective for implementation in industrial 

turbomachinery by Nett and his group [6, 7]. 

In this paper we pursue a nonlinear control approach based on bifurcation theory. The proposed 

control system employs pressure rise as output measurement and throttle position as actuating signal 

for which both sensor and actuator are available in current axial compressors. This is in contrast to the 

linear control method in [5, 14] that requires 2D (two-dimensional) sensing and 2D actuation, to the 

nonlinear control method in [10, 16, 6, 7] that requires measurement of amplitude of nonaxisymmetric 

disturbance flow, or rotating stall, and to the more recent work in [4, 8] that requires air jets as actuators. 

A nonlinear feedback control law is derived based on classical bifurcation theory for nonlinear dynamics 

and is shown to be effective in eliminating the hysteresis loop associated with rotating stall and in 

extending the stable operating range of the compressor characteristic. In comparison with the existing 

results on nonlinear control of rotating stall, our feedback control law accomplishes the same goal as 

those reported in [10, 16], and more importantly has the potential for surge control as well. 

The schematic diagram of the axial compressor is given in Figure 1. The notations adopted in this 

paper are consistent with those in [12, 11] with minor changes: 

blade speed at mean radius 

volume of plenum 

total aerodynamic length (Lc/R) 

static pressure at end of duct and in plenum 

total pressure ahead of entrance and 

following the throttle duct 

(pT —pT)/pU2: total-to-static pressure rise 

;     V/U: local flow coefficient at station 0 

:     nonaxisymmetric disturbance in flow coefficient 

:     length of exit, entrance, and throttle 

ducts, in wheel radius 

;     Ut/R with t time 

R = mean rotor radius U 

Ac = compressor duct area vP 

Lc = total geometric length h 
as 

: 
speed of sound Ps 

B (U/2a.)y/Vp/(AcLc) PT 

P = density 

a = time-lag of blade passage tfr 

V = local flow velocity <t> 
1 = throttle position <p 

IGV = inlet guide vanes IE,IIJT 

4>T = flow coefficients in throttle 

A = exit duct length factor £ 

PT 

IGV 

l- 

4>(e& 

k-t 

Compressor 

Figure 1: Schematic of compression systems 



2    Moore-Greitzer Model and Rotating Stall Control 

For the basic compression system shown in Figure 1, the local flow coefficient at station 0 is denoted by 

(f>(£,9). The circumferential mean of the flow coefficient at station 0 is denoted by <^>(£) and is given by 

where ipo(£, 0) = ¥>(£, 0,0) with </J(£, 9, rj) the flow disturbance.   If the gas flow is incompressible and 

irrotational, then there exists a disturbance potential flow <^>(£, 6, rj) that satisfies Laplace's equation 

d2(p     d2(p 
dO2 + drj2 = 0. 

The boundary condition is taken as [11] 

dip 
drj 

(£,0,-ZF) = O, 

(1) 

(2) 

where lp > lj. If the disturbance flow potential and circumferential mean of the flow are known, then 

the pressure rise coefficient ij>(£) is determined by the momentum equation [12]: 

* = Mt) - icT( - A^ 
1 ( &<p   d^\ 

=0     2a \  d^dr) + dOdrj I 
77=0 

The pressure rise is balanced by the pressure drop in plenum governed by equation: 

dip        1 
lr. n) = 1^2 (* - FT

1
W) , ^ = M<h) = \KT<&, 

(3) 

(4) :df      AB2 V     r±J      AB2 V-     -■■*■  ^V   T      -*yr.,      r 

by assuming a parabolic throttle characteristic. For uniform and steady flow, ip = ipc, the performance 

characteristic given by [12] 

31 

M<t>) = H co + cl{±-l)+cM-l (5) 

Laplace's equation in (1) with the boundary condition in (2) yield the harmonic form for disturbance 

potential flow [11, 1] as follows: 

<p = JT (an{Oejne + an(Oe-jne) (fb+W + c~n("+^)) ,   r, < 0. (6) 

Thus the flow disturbance at station 0 has the form 

oo 

Vo = XI ^0n'   ¥°n = ZWAnfä sin(n0 - rn£),   An = 2n\an\ smh.(nlF)/W (7) 
n=l 

with rn a constant by assuming constant speed of the nth harmonic disturbance flow, i.e., constant 

wave speed. The value of lp can be taken as infinity provided An has a finite value.  Using first order 



approximation, or single harmonic Galerkin method for flow disturbance, Moore and Greitzer obtained 

the following nonlinear state-space model [12]: 

W/H 

1> 

A_JL 
w   w FT'W 

-J + C0+ (Cl + 6c3A2) 

dA 
17   =   A 1- 

W W 

1 +"(w-\ 

1 H ta,nh{nlF) 

(8) 

(9) 

(10) 

for compression systems. 

If the following changes of variables: 

$ = — 1     \Dr = —     T —  f (11) 

are used, and with notations ß = 2BH/W, 7 = ^2H/KT/W, and a — 1.5a/c/(l + aAtanh(/jf?)/n), then 

(8) - (10) are converted into the following simpler form of ODEs [11]: 

* 
1 
^(*-*7(*)): $7($) = 7V7* - 1,  7 > 0, (12) 

$   =    -$ + $c($) + 6c3$A2,     tfc($) = c0 + ci$ + c3$
3, (13) 

A   =   a A (l - $2 - A2) , a > 0, (14) 

where x denotes derivative of a; with respect to "time" variable r. The throttle position 71 and parameter 

ß play an important role in the dynamics of axial compressors. The cubic polynomial $c is compressor 

dependent. In. [13], the following values 

c0 = 8/3,   ci = 1.5,  c3 -0.5, (15) 

are assumed, while in reality these coefficients are uncertain. It should be clear that a cubic curve is 

completely parameterized by W, H, and Co, with c\ = — 3c3 = 1/2, that define its shape and position. 

In this paper, we adopt an approach that the variation of H is translated into those for Co, c\, and c3. 

We are thus led to the following assumption: 

1 < c0 < 5,    Ci > 0,    C3 < 0   and   c\ + 3c3 = 0, (16) 

for the coefficients of the performance characteristic curve. The parameter a is less important and less 

interesting. 

There are two sets of equilibrium points. The first set is Ae = 0 corresponding to the axisymmetric 

flow. In this case the compressor performance characteristic is given by 

tfe = fc($e) = C0 + Ci$e + C3$ (17) 

1Throttle position can be implemented with bleedvalves if used as actuator. 



shown by solid curve on the upper-right part of Figure 2 that extends to the left with dotted line. 

The steady operating point of the compressor is determined by the intersection of the performance 

characteristic $e = $c($e) and the throttle characteristic 

$e = $7(*e)     <=}►     *e = ^(l + $e)
2 

shown with two dashed lines corresponding to two different 7 values. See points A and D in Figure 

2. The second set of equilibrium points is given by Ae ^ 0 where Ae represents the amplitude of 

the nonaxisymmetric disturbance flow, or rotating stall. In this case, the performance characteristic is 

degenerated into the rotating stall characteristic 

*e = *s($e) = C0 + (Ci + 6c3)$e - 5c3$ (18) 

shown by solid curve on the lower-left part of Figure 2 that extends with a sharp slope to the right 

indicated by dotted line. 

A;/ 

c ,-:.■■• 

^ *- O 
-1 1 

Figure 2: Schematic of compressor characteristic 

By employing a linearization method, it can be easily shown that the solid parts of $c and \PS 

are stable, but dotted parts of $c and tys are unstable. Thus, if one gradually decreases the throttle 

position 7 that initially determines the operating point D, then the steady operating point moves along 

curve $c to point A, the peak of the compressor performance characteristic curve. Further analysis 

with center manifold theorem for nonlinear dynamics [15] indicates that point A is unstable if (15) is 

used for \PC as in (17). Thus nonaxisymmetric disturbance flow, or rotating stall, will eventually be 

born and the steady operating condition will quickly settle at point B on the rotating stall characteristic 

curve \PS. There is a substantial drop in both the pressure rise and flow coefficient. At this momemt, 

however, increasing the throttle position does not recover axisymmetric flow. Rather, the operating 

point moves along curve Ws, resulting in even lower pressure rise. It then settles quickly at point D 

of the performance characteristic curve \PC after reaching point C. The described process represented 

by D-A-B-C-D in Figure 2 constitutes the hysteresis loop associated with rotating stall.  Because the 



compressor has to work under much lower pressure rise and flow coefficients when rotating stall occurs, 

prolonged operation under this condition will cause severe stress and overheating in rotor blades, and 

may thus damage the aeroengine. However little can be done to return to axisymmetric flow once 

rotating stall is fully developed. The only remedy at present is to shut down the engine and restart it. 

Rotating stall in axial compressors poses a great challenge to both turbomachinery engineers and 

control engineers. Because of the existence of rotating stall, large stall margins have to be employed 

so that axial compressors can only operate at much lower pressure rise but higher flow coefficient 

than point A, resulting in poor engine performance; because of the existence of hysteresis loop, active 

control may not be effective once rotating stall is fully developed. It is perhaps beneficial to look into 

the dependence of equilibrium point ($e,$e,Ae) on the throttle position 7, and to understand how 

local stability changes with respect to 7. Recall that the throttle position synthesizes the effects of 

combustion chamber, bleedvalves, and disturbances to the flow in compressors. Thus it is a highly 

uncertain parameter and very sensitive to inlet disturbance. 

By setting the right hand side of (12) - (14) to zero, there hold 

(*e + I)2 

7 

72 = 

*c(*e)   ' 

(^e + 1)2 

*,(*e)    ' 

Thus equilibrium solution bifurcates at 

2 
7 = 7c = 

for Ae = 0,   all $e,   and 

for Ae ^ 0,   $e = y/l - A\. 

Ae = 0,    $e = 1,    *e = Co + Ci + C3. 

(19) 

(20) 

(21) 
Vco + Cl + c3' 

That is, more than one equilibrium solution is born at 7 = fc. Because these bifurcated solutions are 

independent of time, they are called stationary bifurcation, and their stability can be determined using 

the well-known linearization method. Clearly rotating stall occurs at Ae ^ 0 that is also a function of 7. 

Thus stability of Ae is hinged to the values of 7 and shown by the bifurcation diagram (Ae, 7) as in (a) 

of Figure 4 at the end of Section 4, where (15) is used for the performance characteristic curve $c as in 

(17). Again by convention, the solid part corresponds to stability and dotted part instability. In light 

of [9], this is exactly the subcritical pitchfork bifurcation and is well known for causing the hysteresis 

loop in classical bifurcation theory. It is interesting to note that the hysteresis loop persists as long as 

Co < 5, but disappears for CQ > 5 because of the change of pitchfork bifurcation from subcritical into 

supercritical. This fact was pointed out by McCaughan [11]. A more interesting observation made by 

Wang and Abed [16] for the case of Co < 5 is the loss of stabilizability with linear feedback at bifurcation 

point 7 = 7c. Indeed, setting 7 = 7C + u, and linearizing the Moore-Greitzer model at (\Pe, $e, Ae), 

Ae = 0, yield the linearized model 

X\ -ß-2%c(*e) /r2         0 Xi 

X2 = -1 *'c(*e)               0 x-i 

X3  . 0 0     *(i-*l)\ .  Z3 

+ 
-/r2*;c(*e) 

0 

0 

(22) 



where xt = $ - $e, %2 = $ - $e, and x3 = A. Clearly for |$e| < 1, the unstable eigenvalue at <r(l - $\) 

is not affected by linear control. Thus if the throttle position is used as actuator, linear control fails 

utterly. This observation motivated Liaw and Abed [10], and Wang and Abed [16] to use the nonlinear 

feedback control law u — kA2 based on bifurcation theory. They demonstrated that the nonlinear 

feedback gain k can be chosen such that the pitchfork bifurcation can be altered from subcritical into 

supercritical, thereby stabilizing the bifurcation point 7 = jc and Ae > 0, and eliminating the hysteresis 

loop associated with rotating stall. 

While the nonlinear control law in [10, 16] was experimentally validated in [3, 7], it remains unclear 

how A, the amplitude of nonaxisymmetric disturbance flow, can be measured. One probably has to 

measure local flow coefficient <f> around the circumference of the compressor in order to estimate A. 2D 

sensing is thus required especially when high order harmonics are involved. At present, hot wires are 

used for measurement of local flow coefficient [14]. These are very delicate devices, making it difficult for 

them to survive the hostile environment of aeroengines. Rather, pressure transducers are more reliable 

and endurable in the volatile flow field. In addition it is less likely for the control law u = kA2 to 

be effective for surge control, especially for the case of pure surge that is in contrast to the potential 

nonlinear control law u = J\f(^). Therefore a challenging problem is the design of a nonlinear feedback 

control system where pressure rise is used as output measurement and throttle position as actuating 

signal. It should be clear that such a control system requires only ID sensing and ID actuation even if 

high order harmonics are involved. Moreover both pressure sensor and throttle actuator are available in 

current configuration of axial compressors. The difficulty lies in the design of nonlinear feedback control 

law that achieves the same results as in [10, 16, 3]. This will be studied in next section. 

3    Nonlinear Feedback Control Based on Bifurcation Theory 

This section focuses on the design of a nonlinear feedback control system where pressure transducer is 

used as sensor and throttle as actuator. As discussed earlier, linear control fails to stabilize the equilibria 

of Ae > 0 for the case CQ < 5. Thus nonlinear feedback control law has to be employed. We begin 

our discussion with the geometric shape of the bifurcation diagram in (a) of Figure 4. The bifurcated 

solution, according to (19), can be written as 7 = 7(Ae) for Ae > 0 at least locally. The hysteresis loop 

associated with subcritical pitchfork bifurcation is due to the two maximum values of 7(Ae) at Ae ^ 0, 

whereas supercritical pitchfork bifurcation admits only one maximum value for -){Ae) that occurs at 

Ae = 0. Intuitively speaking, the elimination of the hysteresis loop in (a) of Figure 4 is hinged to the 

elimination of the two extreme values of "f(Ae) at Ae ^ 0, or merging them into a single one located at 

Ae = 0. The nonlinear feedback control law proposed in [10, 16] accomplishes exactly this goal. 

For the control system considered in this paper, the nonlinear feedback law u = A/*(^?) is employed 

where Af(-) is a memoryless nonlinear function. The goal is to design Af(-) such that it eliminates 

the hysteresis loop associated with rotating stall and stabilizes the equilibria of Ae ^ 0.  Substituting 



7 = 7o + AT(f) into (12) yields 

$ = -l($ + l-jV(*)>/f-70V^), (23) 

where 70 is the normal value of the throttle position that may not be the same as 7C, the critical 

value at bifurcation. It follows that the nonlinear feedback control law u = jV($) changes the throttle 

characteristic curve that is obtained by setting the right hand side of (23) to zero, yielding 

(7c+AT(We))
2*e = (l + $e)

2. 

In general the steady pressure rise \Pe is not a single-valued function of $e unless 

u = A/"(f e) = K/y/V (24) 

is chosen with K the feedback gain to be designed. It should be pointed out that although the throttle 

characteristic is changed for K ^ 0, the compressor performance characteristic \PC and rotating stall 

characteristic $s remain the same. We will derive an explicit expression of K that eliminates the 

hysteresis loop associated with rotating stall, and stabilizes the equilibria for Ae ^ 0 under some mild 

conditions. For this purpose, setting the right hand side of (13), (14), and (23) to zero gives the 

expression 

it=($e^"c(Ve)
A)2' f°r Ae=°>au $e'and (25) 

These two equations reduce to (19) and (20) respectively for K = 0 and 70 = 7. We will first demonstrate 

how introduction of nonlinear feedback gain K as in (24) can actually change the geometric shape of 

the subcritical pitchfork bifurcation in (a) of Figure 4. 

Theorem 3.1 Suppose the coefficients of^c as in (17) satisfy (16), and c0 > -4c3. If the nonlinear 

feedback gain in (24) is chosen as 

K = HCSLL!**), (27) 
9c3 - ci 

then 7o = /y0(Ae), obtained from (26), admits only one extreme value for — 1 < Ae < 1, and it takes 

place at Ae = 0. 

Proof: For Ae ^ 0 as in (26), direct calculation for derivative of 7^ with respect to Ae yields 

djl = 2    d-Yo d$e = /    -Ae    \ d-jl 
dAe       

lod$edAe      \^i^Al) d$e- 

Thus, there holds 

^>!=£ = -OT = -iwi3^ (28) 

1« = ($°» ]* f) ■   for A' *0' *• = 1/1 ~ A'- (26) 



where $e = A/1 - Aj, and -F($e) is given by 

F($e) = 2*s($e) - ^($e) ($e + 1 - ÜT). (29) 

It is claimed that F($e) > 0 for 0 < $e < 1 provided that K satisfies (27). Indeed, there holds 

Thus for c3 < 0 and ct + 6c3 = 3c3 < 0 by cx = -3c3 as assumed in (16), 

2 30c3$e        y    15c3 

for all $e > 0. Moreover the gain K chosen as in (27) satisfies 

K = 2(c0 + 10c3) = CQ + 10c3 

9c3 - c\ 6c3 

by c0 > -4c3 and c3 < 0. It follows that 

^-1-^-%f^^i'-1-l/^T^ = ^-1-4=<0- (30) 2 30c3$e Y    15c3 \/5 V    ' 

using the hypothesis ca + 3c3 = 0. By again c3 < 0, the above inequality leads to the conclusion that 

for all $e > 0, 

/(••) = ^ = -3°<3*, (K-1- U. - &±**n < 0. d$e V 2   e       30c3$e   ; 

Evaluating F($e) at $e = 1 gives, using (27), 

F($e = 1) = 2c0 + 20c3 + K(ci - 9c3) = 0. 

Since /($e) = F'($e) < 0 for all $e > 0, F($e) is a strictly decreasing function of $e, and since 

F($e = 1) = 0, we conclude that 

F($e) = F (^1 - Ae)   > 0,    V Ae = y/l-Q* > 0, 

by $e = \/l — A\. The above inequahty in turn implies that 

df0   j   > 0,      for Ae < 0, 
Yo(Ae) 

dAe   I   < o,      for Ae > 0, 

by 7o > 0, $e > 0 according to (28). Thus Y0(Ae) = 0 if and only if Ae = 0 that is the only extreme 

point for the function j0(Ae), in fact, a maximum point, in the interval \Ae\ < 1. I 

The hypothesis on the coefficients of the performance characteristic curve \J/C as in (16) is reasonable. 

Typically, c\ = 1.5 and c3 = -0.5. For the compressor model as in [13], c0 = 8/3. Thus, the feedback 

back gain in (27) is obtained as 
= 2(c0 + 10c3)^7 

9c3 - a 9       ' 



as required. In fact by examing the proof, K < 1 is not a necessary condition for the result in Theorem 

3.1 to hold. Indeed, (30) indicates that K < 1 can be improved to K < 1 + \/3/15 = 1.4472. Because 

(30) ensures /($e) < 0 for all $e > 0, K < 1.4472 is again not a necessary condition. This will be 

demonstrated in the simulation section. However because large K implies aggressive control strategy, 

and consequently causes more distortion to the throttle characteristic, we will restrict our development 

to the scope confined by 0 < K < 1 in the rest of the section. 

A more fundamental question on the nonlinear feedback gain as given in (27), is whether or not 

it stabilizes the bifurcated solution at f0 < 7C, and Ae > 0, excluding the equilibria Ae = 0. We will 

consider first the equilibrium point Ae = 0 at critical value of 70. 

Theorem 3.2 Suppose that the coefficients of the performance characteristic curve \PC satisfy (16), and 

in addition 

c0 > -4c3,    c3 < -1/2. (31) 

If the nonlinear feedback gain K is chosen as 

fn     ! / x   2(co+10c3)l 
A=max(2--(c0 + Cl + C3),   Vc3 - Cl    } ' 

Then 0 < K < 1, and the equilibrium point Ae = 0 at 

2- K 
lo 

*%> A/CO + CI + C3 

(32) 

(33) 

is asymptotically stable. 

Proof: The conditions (16) and (31) imply that 

Co + ci + c3 = c0 - 2c3 > -6c3 > 3, 
2(c0 + 10c3) _ -c0 - 10c3      4c: < 

10c3 = 1. (34) 
9c3 - ci -6c3 -6c3 

Thus (16) and (31) ensure that the gain chosen as in (32) satisfies 0 < K < 1. Since u = K/y/9, the 

nonlinear feedback system has the form 

ß~2 
Xi 

X2 

X3 

0 

1 #(l-*2) 0 

0 0 

x1 

X2 

X3 

+ higher order terms, (35) 

where x\ = $ - $e, x2 — $ - $e, and x3 = A. Because the equilibrium solution bifurcates at $e = 1, 

the critical value of 70 satisfies (33). Thus center manifold theorem [15] can be applied to determine 

the stability of Ae = 0 at f0. For this purpose, set 

Xi 

X2 
= 

«1 

a2 
4 + ' ßi ' 4 + o{x\). (36) 

Then by $e = 1, 

x3 = A = -aA3 - 2a($ - 1)A + C(A4) = -ax% - 2ax2x3 + 0{x\) = C7(a:|). 

10 



Thus there holds 

Xi 

X2 

2a\x3 +3ßix% 

2a2x3 + 3ß2x3 
^3 

2a\x3 + Zß\x3 

2a2x3 + 3ß2x3 

0(x%) = 0(x$). 

On the other hand, the nonhnear feedback system in (12)—(14), in conjunction with (24), yield 

$ 

$ 

Xi 

X2 0 

7o 

2ß2V^e 
-1 

-1 

r2" 
0 

X\ 

X2 x3 

ctixl + ßixl 

a2x\ + ß2x% 
-3 

+ 

+ 0(xf), 

by (36). Consequently the coefficients of lower order terms x3 for k < 3 are zero that results in 

37o ßx = ß2 = 0,    «i = -3,    a2 = - 
2x/C 

It follows that 

»3 = -ax% - 2ax2x3 + ö(xf) = -<JX\ - 2ax3{a2x
2

3) + 0(x\) = -a{l + 2a2)x% + 0{xf). 

Direct calculation shows that, by substituting the expression for K as in (27), 

*e - 6 + ZK      2c3($e - 1) + co 
l + za2    = >  

(37) 

(38) 

¥« 2c3 

2c3($e - 1) + CQ ¥e - 1 - Co  _  Ci + C3 - 1 

*e " *e ~ % ~     ' 

due to c3 < -1/2, cj = -3c3, and *e = $c($e) = c0^cx-\- c3. For K = 2 - (c0 + cx + c3)/3 = 2 - $e/3 

at $e = 1, 

1 + 2a2 = ^    = 0. 

Hence with if as in (32), 1 + 2a2 > 0. There are two different cases to consider. Case 1: 1 + 2a2 > 0. 

Then the local asymptotic stability of x3 is easily concluded by the center manifold theorem in light of 

(38). Case 2: 1 + 2a2 = 0. In this case, 

1 7o_= 1 
3 

«2 = -~,      => 
'*, 

by (37). Hence in order to determine the stability of ODE in (38), higher order terms are needed. Now 

(36) gives 

X\   «1 
xl + ßi x$ + 

'   h' 
x2 a2 «2 I   b2   J 

xl + 0(xl),    ax = -3,   a2 = 
1 

Similar calculations shows that 

Xl = P 
1 3 

x3 + [ b2 - -6i ) x3 + 0{x%) 0{x% 

x2 = -(a1-f)xj-b1x
5

3 + 0(xi)   =    0(xt), 

X3 = -a(2a2 + ^jxl + 0(xi)    =    0(x5
3). 

(39) 

(40) 

(41) 

11 



Hence, we obtain 

It follows that 

bi = b2 = 0,    a\ 

1      5 
2°2 + 4=8 

ßl 6 
a2 = J'We 

5*. 

16     8$, 

>0 
4$e 8$e 

by $e = Co + ci + C3 > 3 as shown in (34). Thus the ODE in (41) is asymptotically stable, that in turn 

implies the asymptotic stability of Ae = 0 by center manifold theorem. I 

The condition C3 < —1/2 and CQ + C\ + C3 > 3 as in (31) is true for the compressor used in [13]. In 

the case 1 + 2«2 = 0, it is advised to choose 6 > 0 such that 

K = max < 2 
l(     ,       .     A   2(co + 10c3)l   ,  c ^ 
- (c0 + ci + c3), — > + 6<l. 
3 9c3 - ex    J 

Such a choice of K makes l + 2a2 > 0 that validates the ODE (38) when using center manifold theorem, 

rather than (41). This is due to the fact that for 1 + 2a2 = 0, the bifurcated solution j0 = 70(Ae) in 

the neighborhood of Ae = 0 has its derivatives 

d*7o 
dA 

HO) = o,  1 = 1,2,3. 

Thus the curve 70 = 70(Ae) is very fiat at Ae = 0. Consequently small perturbation of 70 may cause 

large variation in Ae that is not desirable. But if l + 2a2 > 0, then 7"(0) 7^ 0, minimizing the sensitivity 

of Ae with respect to 70 in the neighborhood of Ae = 0. 

The next result is on the local stability of Ae 7^ 0, but close to Ae = 0 when feedback gain K as in 

(27) is used. 

Theorem 3.3 Suppose that the coefficients of the performance characteristic curve ^c satisfy (16), 

and (31). If the nonlinear feedback gain K is chosen as in (32), then the equilibrium point Ae ^ 0 is 

asymptotically stable provided Ae is sufficiently close to Ae = 0. 

Proof: Projection method as in [9] can be used to show the local stability of the bifurcated solution. 

We shall, however, employ a more elementary proof that uses no more than linearization method. 

Indeed, linearization with x\ = $-$e, x2 = $ —$e, and xe = A-Ae yields approximate linear system: 

r2 
Xi 

%2 

X3 

S!o_ 0 

-1        3c3A2 + Cl + 3c3    12c3Ae$e 

0 -2ovL$e -2a Al 

Xi 

X2 

X3 

The corresponding characteristic equation is given by 

+ 

+ 

+ 

lo + (2a - 3c3) A\ - (Cl + 3c3) A2 

2ß2V^e 

2R2JW-       + 3   ^ 3"   ° 3   e)    e + I< 2ß2 

2aA2
e e + 

lo 

2/52V*e 
+ 2a A2

e   (ci + 3c3) 

o"io 

ß2        2ß2^We 
3 (8c3 - 10c3A2) Al - 2 (ci + 3c3) Ä; 
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As Ae —> 0, all the coefficients of the characteristic equation are strictly positive except the constant term 

that goes to zero. Thus in light of Routh-Hurwitz's stability test, the local stability of the bifurcated 

solution close to Ae = 0 is hinged to the strict positivity of the constant term. Since c\ + 3c3 = 0, the 

constant term is 

2aA2
e 3a7o 

ß2 2ß2y/Wt 
(8c3 - 10c3Al) A2

e > 

> 

ß2 1 + 670C3 2(7 Al 
>  
-    ß2 

37o 
y/WK 

2aA2
e(2,K - 6) + (c0 + cj + c3) 

>0, 
Co + Ci + c3 

by c\ + 3c3 = 0, and j0 < (2 - K)/y/W^, \Pe < c0 + ci + c3 as $e < 1 for Ae 7^ 0. This concludes the 

local asymptotic stability of the bifurcated solution near Ae = 0. I 

C 3 

0.5 - 

1.25  1 1  
2 3 4 5 

Figure 3: Allowable region for coefficients of compressor characteristic curve 

Remark 1: The conditions in Theorems 3.1, 3.2, and 3.3 amount to the following: 

(i) c0 < 5,    (ii) c3 < -0.5,    (iii) c0 > -4c3, (42) 

by c\ + 3c3 = 0. The condition Co < 5 indicates the existence of hysteresis loop associated with rotating 

stall for axial compressors [11]. If Co > 5, nonlinear feedback control is unnecessary. The conditions 

(ii) and (iii) ensure the existence of the nonlinear feedback law as in (24), such that 0 < K < 1 that 

changes the pitchfork bifurcation from subcritical into supercritical, and stabilizes the rotating stall 

characteristic locally. In fact, in light of the projection method as in ([9]), our nonlinear feedback law 

stabilizes the bifurcated solution Ae ^ 0 for all 0 < $e < 1- This is due to the fact that the bifurcated 

solution 70 = 70(Ae) does not admit a turning point for $e > 0. The conditions in (42) are represented 

by shaded area, excluding the dashed side, in Figure 3. If Co and c3 fall into the shaded area, then there 

exists a stabilizing feedback gain K that can be computed according to (32). 

Remark 2: As discussed earlier, K < 1 can be improved to K = Ä"max for some üfmax > 1 + l/v5 f°r 

which Theorem 3.1 still holds. If local stability at Ae = 0 and $e = 1 is the only concern as in [10, 16], 

then the feedback gain in (32) can be replaced by 

Co + ci + c3 K > KT 2- (43) 

by the proof of Theorem 3.2, especially (38). In this case, no additional constraint is required on the 

coefficients of compressor performance curve, but the curve 70(Ae) defined by (26) may admit more 

than one extreme point. Incidentally for the compressor in [13], üfmm = 7/9 as well. 
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4    Numerical Simulations 

The nonlinear feedback control law as presented in the previous section is tested in this section with 

numerical simulations. The compressor model as in [13] is used where various parameters are: 

A = 1.75,     # = 0.18,    T^ = 0.25,    B = 2,     a = 1/3.5, 

Co = 8/3,     c\ = 1.5,     cz = —0.5,    lc = 8,     lp — oo. 

Figure 5 shows four simulation plots in the absence of the feedback control law (24). Plot (a) is a 

bifurcation diagram of (Ae,j) that illustrates the subcritical pitchfork bifurcation associated with the 

hysteresis loop in rotating stall where the solid line indicates stability and the dotted line illustrates 

instability. The bifurcation diagrams in (b) - (d) of Figure 4 are obtained from (a) of Figure 4 using 

the relations satisfied for steady equilibrium solutions. The hysteresis loop in (a) of Figure 4 clearly has 

adverse effects for using the throttle as control actuator. This is seen from the fact that the operating 

points (We, $e, Ae) are not single-valued functions of 7. Thus control strategies are difficult to work when 

rotating stall occurs. However after using the nonlinear feedback control law, the pitchfork bifurcation 

in (a) of Figure 4 is changed from subcritical into supercritical as shown in (a) of Figure 5. The 

bifurcation diagrams in (b) - (d) of Figure 5 show that the adverse effects resulting from hysteresis loop 

are eliminated, and ($e,<i>e, Ae) are all single-valued functions of 7. Hence our goal stated in Section 1 

is achieved. 

We notice from (a) and (c) of Figure 5 that at the critical value of 7, small perturbations in throttle 

position may cause large variations in the amplitude of the disturbance flow and the pressure rise. This 

problem can be eliminated at the expense of using large gain K. Figure 6 shows the bifurcation diagrams 

of K = 1.167 that is 50% increase of the gain K = 7/9. But the improvement is significant. We would 

like to emphasize that Theorem 3.1 holds for K > 1, at least in the case K < 1 + l/\/5 = 1.4472 

as discussed in the previous section. Similarly, the stability results in Theorems 3.2 and 3.3 hold for 

K > -Kmin where Kmin is given in (43). The effect of aggressive control gain {K = 1.167) is obvious from 

(a) and (c) of Figure 6. The critical value of 70 is now about 0.4, 35% smaller than that of K = 7/9, 

thus increasing the tolerance for the disturbance in throttle. 

5    Conclusion 

A nonlinear control approach based on bifurcation theory was developed to design a feedback control law 

for rotating stall control in axial compressors. The proposed control system employed pressure rise as 

output measurement and throttle position as actuating signal. The proposed nonlinear feedback control 

law was shown to be effective in eliminating the hysteresis loop associated with rotating stall and in 

extending the stable operating range of the compressor characteristic. In comparison with the existing 

results on nonlinear control of rotating stall, our feedback control law accomplishes the same goal as 

those reported in [10, 16]. A more interesting problem is clearly whether or not the same feedback law 

14 



works for surge control that is currently under investigation. 

A      1 

1.5 2 
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Gamma 

Figure 4: Bifurcation diagrams without feedback control 
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Figure 5: Bifurcation diagrams with feedback control 
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Figure 6: Bifurcation diagrams with large gain feedback control 
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